

EDUCAÇÃO, CIÊNCIA E INOVAÇÃO

Ano letivo 2023/2024

Ensino Secundário – 1º e 2º Fase

Disciplina de *Química – 342*

Informação Prova de Equivalência à Frequência

(Despacho Normativo n.º 4/2024, de 21 de fevereiro)

1. Introdução

• O presente documento divulga informação relativa à prova de equivalência à frequência do ensino secundário da disciplina de Química, do 12.º ano, a realizar em 2024.

2. Objeto de avaliação

A prova tem por referência o Perfil dos Alunos à Saída da Escolaridade Obrigatória e as Aprendizagens Essenciais de Química para o 12.º ano.

- Pretende avaliar a aprendizagem passível de avaliação numa prova escrita e prática de duração limitada, nomeadamente:
- Conhecimento/compreensão de conceitos de Química;
- Compreensão das relações existentes entre conceitos e que permitiram estabelecer princípios, leis e teorias;
- Aplicação dos conceitos e das relações entre eles a situações e a contextos diversificados;
- Seleção, análise, interpretação e avaliação críticas de informação apresentada sob a forma de textos, de gráficos, de tabelas, entre outros suportes, sobre situações concretas de natureza diversa, por exemplo, relativas a atividades experimentais;
- Produção e comunicação de raciocínios demonstrativos em situações e em contextos diversificados;
- Comunicação de ideias por escrito;
- Interpretação correta de um protocolo;
- Utilização correta de material de laboratório;
- Execução correta das técnicas de laboratório necessárias à realização de atividades experimentais;
- Apresentação dos resultados com um número adequado de algarismos significativos;
- Apresentação de conclusões a partir de resultados experimentais;
- Crítica de resultados experimentais obtidos;
- Elaboração de um relatório/questões pós laboratoriais.

A valorização relativa dos temas/conteúdos apresenta-se no Quadro 1.

Quadro 1 – Valorização relativa dos temas/conteúdos

Prova	Temas /Conteúdos	Cotação	
	Terrias / Conteduos	(em pontos)	
Teórica (200 pontos)	Metais e ligas metálicas - Estruturas e propriedades dos metais. - Degradação dos metais. - Metais, ambiente e vida.	de 80 a150	
	Combustíveis, energia e ambiente - Combustíveis fósseis A termodinâmica dos combustíveis.	de 60 a 100	
	Plásticos, vidros e novos materiais - Os plásticos e os materiais poliméricos. - Biomateriais.	De 20 a 40	
Prática	Execução de um trabalho prático.	140	
(200 pontos)	Elaboração do relatório do trabalho / Questões pós- laboratoriais.	60	

3. Caracterização da prova

- A prova inclui parte Teórica e parte Prática: Prova Teórica 70% + Prova Prática 30%
- Contém conjuntos de itens que têm como suporte informações que podem ser fornecidas sob a forma de textos (artigos de jornal, textos científicos, descrição de experiências), figuras, tabelas e gráficos.
- Os itens podem ser de tipologia diversificada:
- - itens de resposta fechada: curta; escolha múltipla; associação; verdadeiro/ falso.
- - itens de resposta aberta: curta; extensa; extensa orientada.
- Cada conjunto pode incluir itens de diferentes tipologias.
- A sequência dos vários tipos de itens é variável ao longo de um mesmo conjunto e ao longo da prova.
- Realização obrigatória de trabalho prático.
- A prova teórica inclui uma tabela de constantes, um formulário e uma Tabela Periódica.

4. Critérios de classificação

PROVA TEÓRICA

- Às respostas de conteúdo ambíguo ou contraditório não será atribuída qualquer cotação.
- A todas as respostas ilegíveis ou não identificadas será atribuída a cotação de zero pontos.
- Em caso de engano, este deve ser riscado e corrigido à frente, de modo bem legível.
- Nos itens de escolha múltipla ou nas questões de estabelecimento de correspondência, onde é pedida apenas uma opção, se a resposta contiver mais do que uma opção será atribuída a cotação de zero pontos.
- Nos itens de verdadeiro/falso, de associação e correspondência a classificação a atribuir tem em conta o nível de desempenho revelado na resposta.
- Nos itens de verdadeiro/falso serão anuladas as respostas que indiquem todas as opções como verdadeiras ou falsas.

- Nos itens de resposta curta, caso a resposta contenha elementos que excedam o solicitado, só são considerados para efeito de classificação os elementos que satisfaçam o que é pedido, segundo a ordem pela qual são apresentados na resposta. Porém, se os elementos referidos revelarem uma contradição entre si, a cotação a atribuir é de zero pontos.
- Sempre que haja duas respostas ao mesmo item, apenas é cotada a que se apresenta, na prova, em primeiro lugar.
- A classificação das respostas aos itens de resposta aberta tem em conta a utilização adequada da terminologia científica; a utilização de uma escrita clara e rigorosa; a coerência de argumentos na interpretação e explicação de conceitos e/ou factos.
- As respostas, desde que corretas, podem não apresentar exatamente os termos e/ou as expressões constantes dos critérios específicos de classificação, desde que a linguagem usada em alternativa seja adequada e rigorosa.
- Nos itens que envolvam cálculos, é obrigatória a apresentação dos mesmos.
- Consideram-se respostas com resoluções diferentes, desde que igualmente corretas.
- Nos itens que podem ser resolvidos por mais de um processo, caberá ao professor corretor adotar um critério para fracionar as cotações, de modo a contemplar os conhecimentos revelados, quando a resolução não estiver totalmente correta.
- Se a resolução de um item apresentar erro exclusivamente imputável à resolução de um item anterior, será atribuída ao item em questão, a cotação integral.
- As cotações parcelares só se têm em consideração quando a resolução não estiver totalmente correta.
- A ausência de unidades ou a indicação de unidades incorretas, relativamente à grandeza a caraterizar, corresponderá a um desconto de um ponto à cotação total do item.
- No caso de o aluno apenas apresentar o valor do resultado final da questão, sem apresentar os cálculos que lhe permitiram chegar à resposta, não lhe será atribuída qualquer cotação.

PROVA PRÁTICA

- As competências experimentais serão avaliadas, individual e presencialmente, de acordo com o trabalho experimental efetuado, sendo os critérios de avaliação das competências definidas em função desse mesmo trabalho.

5. Material

O examinando apenas poderá usar como material de escrita, caneta ou esferográfica de tinta indelével azul ou preta.

É interdito o uso de "esferográfica-lápis" e de corretor.

As respostas são registadas em folha própria, fornecida pelo estabelecimento de ensino (modelo oficial). O examinando deverá ser portador de máquina de calcular gráfica. A lista de calculadoras permitidas é a fornecida pela Direção Geral de Inovação e Desenvolvimento Curricular no ano letivo 2023/2024.

O examinando deverá ser portador de bata, para a realização da parte prática.

6. Duração

90 minutos (Prova Teórica)

90 minutos + 30 min tolerância (Prova Prática)

TABELA DE CONSTANTES

Constante de Avogadro	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$			
Constante de Planck	$h = 6,63 \times 10^{-34} \text{ J s}$			
Constante universal dos gases ideais	$R = 0,082 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$ $R = 8,31 \text{ J mol}^{-1} \text{ K}^{-1}$			
Velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$			

Série eletroquímica

			Ser	nirreaçã	io	
	Oxidante				Redutor	E° redução (V)
	Li ⁺ (aq)	+	e ⁻	\Rightarrow	Li(s)	- 3,05
	K+(aq)	+	e ⁻	\rightleftharpoons	K(s)	- 2,93
	Ba ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Ba(s)	- 2,90
	Ca ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Ca(s)	- 2,87
	Na ⁺ (aq)	+	e ⁻	\Rightarrow	Na(s)	- 2,71
	Mg ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Mg(s)	- 2,37
	Be ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Be(s)	- 1,85
	$A\ell^{3+}(aq)$	+	3 e ⁻	\rightleftharpoons	$A\ell(s)$	- 1,66
	Mn ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Mn(s)	- 1,18
	Zn²+(aq)	+	2 e ⁻	\rightleftharpoons	Zn(s)	- 0,76
	Cr ³⁺ (aq)	+	3 e ⁻	\rightleftharpoons	Cr(s)	- 0,74
Aumento do poder oxidante	Fe ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Fe(s)	- 0,44
	Cd ²⁺ (aq)	+	2 e ⁻	=	Cd(s)	- 0,40
	Co ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Co(s)	- 0,28
	Ni ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Ni(s)	- 0,25
	Sn ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Sn(s)	- 0,14
	Pb ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Pb(s)	- 0,13
	2 H+(aq)	+	2 e ⁻	\rightleftharpoons	H ₂ (g)	0,00
	Sn ⁴⁺ (aq)	+	2 e ⁻	=	Sn ²⁺ (aq)	+ 0,13
	Cu ²⁺ (aq)	+	e ⁻	\rightleftharpoons	Cu⁺(aq)	+ 0,15
	Cu ²⁺ (aq)	+	2 e ⁻	\rightleftharpoons	Cu(s)	+ 0,34
	Fe ³⁺ (aq)	+	e ⁻	\rightleftharpoons	Fe²+(aq)	+ 0,77
	Ag+(aq)	+	e ⁻	\rightleftharpoons	Ag(s)	+ 0,80
	$Br_2(\ell)$	+	2 e ⁻	\rightleftharpoons	2 Br ⁻ (aq)	+ 1,07
	$O_2(g) + 4 H^+(aq)$	+	4 e ⁻	\Rightarrow	2 H ₂ O	+ 1,23
	$C\ell_2(g)$	+	2 e ⁻	\rightleftharpoons	2 Cℓ-(aq)	+ 1,36
	Au³+(aq)	+	3 e ⁻	\Rightarrow	Au(s)	+ 1,50
	F ₂ (g)	+	2 e ⁻	\rightleftharpoons	2 F ⁻ (aq)	+ 2,87

Aumento do poder redutor

FORMULÁRIO

Quantidade de substância	$\dots n = \frac{m}{M}$
m – massa	
M – massa molar	
Número de partículas	N = n N _A
n – quantidade de substância	
NA – constante de Avogadro	
• Massa volúmica	ρ = m V
m – massa	
V – volume	
Concentração de solução	$c = \frac{n}{V}$
n – quantidade de substância (soluto)	
V – volume	
Grau de ionização/dissociação	$\alpha = \frac{n}{n_0}$
n – quantidade de substância ionizada/dissociada	
no – quantidade de substância dissolvida	
Equação de estado dos gases ideais	nV = n P.T
p – pressão	pv =111(1
V – volume	
n – quantidade de substância (gás)	
R – constante dos gases	
T – temperatura absoluta	
Conversão de temperatura (de graus Celsius para Kelvin)	
heta – temperatura Celsius	
Relação entre pH e a concentração de H₃O+	pH = -log[H ₃ O+

<	ľ
()
2	5
·C	
Ш	
Ω	
4	ľ
_	1
Ц	J
	1

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,29	86 Rn [222,02]					
17	9 F 19,00	17 Q 35,45	35 Br 79,90	53 I 126,90	85 At [209,99]			71 Lu 174,98		103 Lr [262]
16	8 O 16,00	16 S 32,07	34 Se 78,96	52 Te 127,60	84 Po [208,98]			70 Yb 173,04		102 No [259]
15	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98			69 Tm 168,93		101 Md [258]
14	6 C 12,01	14 Si 28,09	32 Ge 72,64	50 Sn 118,71	82 Pb 207,21			68 Er 167,26		100 Fm [257]
13	5 B 10,81	13 A 26,98	31 Ga 69,72	49 In 114,82	81 T¢ 204,38			67 Ho 164,93		99 Es [252]
		12	30 Zn 65,41	48 Cd 112,41	80 Hg 200,59			66 Dy 162,50		98 Cf [251]
		11	29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg [272]		65 Tb 158,92		97 Bk [247]
		10	28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds [271]		64 Gd 157,25		96 Cm [247]
		6	27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt [268]	63 Eu 151,96		95 Am [243]	
	7 8	œ	26 Fe 55,85	44 Ru 101,07	76 Os 190,23	108 Hs [277]	108 Hs [277]	62 Sm 150,36		94 Pu [244]
		25 Mn 54,94	43 Tc 97,91	75 Re 186,21	107 Bh [264]		61 Pm [145]		93 Np [237]	
		و ا	24 Cr 52,00	42 Mo 95,94	74 W 183,84	106 Sg [266]		60 Nd 144,24		92 U 238,03
	o atómico nento mica relativ	w	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db [262]		59 Pr 140,91		91 Pa 231,04
		Número Eler Massa ató	4	22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf [261]		58 Ce 140,12	
			21 Sc 44,96	39 Y 88,91	57-71 Lantanídeos	89-103 Actinídeos		57 La 138,91		89 Ac [227]
2	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra [226]				
- I 0,1	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr [223]				
	2 13 14 15 16 17	2	2 4 Numero atómico Be Elemento 9,01 12 13 14 15 16 17 8 9,01 12 13 14 15,01 14,01 16,00 19,00 19,00 19,00 10,81 12 13 14 15,01 14,01 16,00 19,00 19,00 19,00 10,81 11 12 13 14 15 16 17 17 17 18 17 18 18 18 18 18	2 4 4 4 4 4 4 4 4 4 4 4 4 4	2 A Número altómico Be Elemento	2 4 4 4 4 4 4 4 4 4 4 4 4 4	A	13 14 15 16 17 17 18 19 11 12 16 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 17 18 18 18 18 18 18	12 13 14 15 15 15 15 15 15 15