

Ano letivo 2022-2023

Ensino Secundário - 1º e 2º Fase

Disciplina de Física 315

Informação Prova de Equivalência à Frequência

1. Introdução

O presente documento divulga informação relativa à prova de equivalência à frequência do ensino secundário da disciplina de Física, a realizar em 2023 pelos alunos que se encontram abrangidos pelos planos de estudo instituídos pelo Decreto-Lei n.º 55/2018, de 6 de julho e com base no Despacho Normativo n.º 4-B/2023, de 3 de abril.

Aspetos relativos à prova:

- Objeto de avaliação;
- Características e estrutura;
- Critérios de classificação;
- Material;
- Duração;
- Tabela de constantes;
- Formulário.

2. Objecto de avaliação

A prova tem por referência o Perfil dos Alunos à Saída da Escolaridade Obrigatória e as Aprendizagens Essenciais de Física para o 12.º ano.

Pretende avaliar a aprendizagem passível de avaliação numa prova escrita e prática de duração limitada, nomeadamente:

- Conhecimento/compreensão de conceitos de Física;
- Compreensão das relações existentes entre aqueles conceitos e que permitiram estabelecer princípios, leis e teorias;
 - Aplicação dos conceitos e das relações entre eles a situações e a contextos diversificados;
- Seleção, análise, interpretação e avaliação críticas de informação apresentada sob a forma de textos, de gráficos, de tabelas, entre outros suportes, sobre situações concretas de natureza diversa, por exemplo, relativas a atividades experimentais;
 - Produção e comunicação de raciocínios demonstrativos em situações e em contextos diversificados;
 - Comunicação de ideias por escrito;
 - Interpretação correta de um protocolo;
 - Utilização correta de material de laboratório;
 - Execução correta das técnicas de laboratório necessárias à realização de atividades experimentais;
 - Apresentação dos resultados com um número adequado de algarismos significativos;
 - Apresentação de conclusões a partir de resultados experimentais;
 - Crítica de resultados experimentais obtidos;
 - Elaboração de um relatório/ questões pós laboratoriais

Prova 318 Página **1** de **6**

A valorização relativa dos temas/conteúdos apresenta-se no Quadro 1. Quadro 1 – Valorização relativa dos temas/conteúdos Temas /Conteúdos Cotação (em pontos) Prova Escrita **MECÂNICA** - Cinemática e dinâmica da partícula. - Movimentos sob ação de uma força resultante constante: projéteis Movimentos de corpos sujeitos a forças de ligação - Centro de massa e momento linear de um sistema de partículas 60 a 100 ELETRICIDADE E MAGNETISMO - Campo gravítico - Campo elétrico - Ação de campos magnéticos sobre cargas em movimento e correntes elétricas______60 a 100 FÍSICA MODERNA - Introdução à física quântica - Núcleos atómicos e radioatividade Prova Prática - Execução de um trabalho prático

Cada uma das provas (escrita e prática) é cotada para 200 pontos.

3. Caracterização da prova

- A prova inclui parte Escrita e parte Prática: Prova Escrita 70% + Prova Prática 30%
- Contém conjuntos de itens que têm como suporte informações que podem ser fornecidas sob a forma de textos (artigos de jornal, textos científicos, descrição de experiências), figuras, tabelas e gráficos.
 - Os itens podem ser de tipologia diversificada:
 - itens de resposta fechada: curta; escolha múltipla; associação; verdadeiro / falso; ordenamento.
 - itens de resposta aberta: curta; extensa; extensa orientada.
 - Cada conjunto pode incluir itens de diferentes tipologias.
 - A sequência dos vários tipos de itens é variável ao longo de um mesmo conjunto e ao longo da prova.

- Elaboração do relatório do trabalho / Questões pós-laboratoriais

200

- Realização obrigatória de trabalho prático.
- A prova inclui uma tabela de constantes e um formulário

4. Critérios de classificação

ESCRITA

- Às respostas de conteúdo ambíguo ou contraditório não será atribuída qualquer cotação.
- A todas as respostas ilegíveis ou não identificadas será atribuída a cotação de zero pontos.
- Em caso de engano, este deve ser riscado e corrigido à frente, de modo bem legível.
- Nos itens de escolha múltipla ou nas questões de estabelecimento de correspondência, onde é pedida apenas uma opção, se a resposta contiver mais do que uma opção será atribuída a cotação de zero pontos.
 - Nos itens de ordenamento, só é atribuída cotação se a sequência estiver integralmente correta.
- Nos itens de verdadeiro/falso de associação e correspondência, a classificação a atribuir tem em conta o nível de desempenho revelado na resposta.
 - − Nos itens de verdadeiro/falso serão anuladas as respostas que indiquem todas as opções como verdadeiras ou falsas.
- Nos itens de resposta curta, caso a resposta contenha elementos que excedam o solicitado, só são considerados para efeito de classificação os elementos que satisfaçam o que é pedido, segundo a ordem pela qual são apresentados na resposta. Porém, se os elementos referidos revelarem uma contradição entre si, a cotação a atribuir é de zero pontos.
 - Sempre que haja duas respostas ao mesmo item, apenas é cotada a que se apresenta, na prova, em primeiro lugar.

Prova 318 Página **2** de **6**

- A classificação das respostas aos itens de resposta aberta tem em conta a utilização adequada da terminologia científica; a utilização de uma escrita clara e rigorosa; a coerência de argumentos na interpretação e explicação de conceitos e/ou factos.
- As respostas, desde que corretas, podem não apresentar exatamente os termos e/ou as expressões constantes dos critérios específicos de classificação, desde que a linguagem usada em alternativa seja adequada e rigorosa.
 - Nos itens que envolvam cálculos, é obrigatória a apresentação dos mesmos.
 - Consideram-se respostas com resoluções diferentes, desde que igualmente corretas.
- Nos itens que podem ser resolvidos por mais de um processo, caberá ao professor corretor adotar um critério para fracionar as cotações, de modo a contemplar os conhecimentos revelados, quando a resolução não estiver totalmente correta.
- Se a resolução de um item apresentar erro exclusivamente imputável à resolução de um item anterior, será atribuída ao item em questão, a cotação integral.
 - As cotações parcelares só se têm em consideração quando a resolução não estiver totalmente correta.
- A ausência de unidades ou a indicação de unidades incorretas, relativamente à grandeza a caracterizar, corresponderá a um desconto de um ponto à cotação total do item.
- No caso de o aluno apenas apresentar o valor do resultado final da questão, sem apresentar os cálculos que lhe permitam chegar à resposta, não lhe será atribuída qualquer cotação.

PRÁTICA

– As competências experimentais serão avaliadas, individual e presencialmente, de acordo com o trabalho experimental efetuado, sendo os critérios de avaliação daquelas competências definidas em função desse mesmo trabalho.

5. Material

O examinando apenas poderá usar como material de escrita, caneta ou esferográfica de tinta indelével azul ou preta e régua.

É interdito o uso de "esferográfica-lápis" e de corretor.

As respostas são registadas em folha própria, fornecida pelo estabelecimento de ensino (modelo oficial).

O Examinando deverá ser portador de máquina de calcular gráfica. A lista de calculadoras permitidas é a fornecida pela Direção Geral de Inovação e Desenvolvimento Curricular no ano letivo 2022/2023.

O Examinando deverá ser portador de bata, para a realização da parte prática.

6. Duração

90 minutos (Escrita)

90 minutos + 30 min tolerância (Prática)

Prova 318 Página **3** de **6**

TABELA DE CONSTANTES

Velocidade de propagação da luz no vácuo	$c = 3,00 \times 10^8 \text{ m s}^{-1}$
Módulo da aceleração gravítica de um corpo junto à superfície da Terra	g = 10 m s ⁻²
Massa da Terra	$M_{\rm T} = 5,98 \times 10^{24} \rm kg$
Raio da Terra	$R_{\rm T} = 6,40 \times 10^6 {\rm m}$
Constante da Gravitação Universal	$G = 6,67 \times 10^{-11} \mathrm{N m^2 kg^{-2}}$
Constante de Planck	$h = 6,63 \times 10^{-34} \text{ J s}$
Carga elementar	e = 1,60 × 10 ⁻¹⁹ C
Massa do eletrão	$m_{\rm e}$ = 9,11 × 10 ⁻³¹ kg
Massa do protão	$m_{\rm p} = 1,67 \times 10^{-27} \rm kg$
Constante de Coulomb no vácuo $k_0=rac{1}{4\piarepsilon_0}$	$K_0 = 9,00 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

FORMULÁRIO
Equações do movimento com aceleração constante $\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$
\vec{r} – vetor posição \vec{v} – velocidade \vec{a} – aceleração t – tempo $\vec{v} = \vec{v}_0 + \vec{a} t$
Energia cinética de translação $E_c=\frac{1}{2}~m~v^2$
m – massa v – módulo da velocidade
Energia potencial gravítica em relação a um nível de referência $E_p=mgh$ m — massa g — módulo da aceleração gravítica junto à superfície da Terra h — altura em relação ao nível de referência considerado
Teorema da energia cinética
Trabalho realizado por uma força constante
Equações do movimento circular com velocidade linear de módulo constante
$a_c - m\'odulo da aceleração centrípeta a_c = \frac{v^2}{r} v - m\'odulo da velocidade linear v = \omega r r - raio da trajet\'oria \omega - m\'odulo da velocidade angular \omega = \frac{2\pi}{T} T - per\'odo do movimento$
2ª Lei de Newton $\vec{F}=m\vec{a}$ $\vec{F}-$ resultante das forças que atuam num corpo de massa m $\vec{a}-$ aceleração do centro de massa do corpo
Força de atrito $F_a = \mu N$
μ_e — coeficiente de atrito N — Força normal exercida sobre o corpo pela superfície em contacto
Posição do centro de massa de um sistema de n partículas $\vec{r}_{CM} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \cdots + m_n \vec{r}_n}{m_1 + m_2 + \cdots + m_n}$ m_n — massa da partícula n

Prova 318 Página **4** de **6**

Momento linear total de um sistema d		
M – massa total do sistema	\vec{v}_{CM} – velocidade do centro de massa	_
Lei fundamental da dinâmica para um	sistema de partículas	$. \vec{F}_{ext} = \frac{d\vec{p}}{dt}$
\overrightarrow{F}_{ext} - resultante das forças exteriores \overrightarrow{p} - momento linear total	que atuam no sistema	
Lei fundamental da hidrostática		
p,p_0 – pressão em dois pontos no inte $ ho$ – massa volúmica do fluido	rior de um fluido em equilíbrio cuja di	ferença de alturas é <i>h</i>
Lei de Pascal		$\frac{F_1}{A_1} = \frac{F_2}{A_2}$
Lei de Arquimedes		
I – impulsão ρ – massa volúmica	do fluido V – volume de fluido de	slocado
Módulo da força de resistência (esfera η – coeficiente de viscosidade do fluido		$F_{resist} = 6\pi\eta r$
3ª Lei de Kepler		$\frac{r^3}{r}$ - constante
r– Raio da orbita circular de um planet		I
Lei de Newton da Gravitação Universa		-
\vec{F}_g – força exercida na massa pontual n G – constante de Gravitação Universal	n_2 pela massa pontual m_1 ; r – distanc	cia entre as duas massas
Campo gravítico		$ \overrightarrow{\mathcal{G}} = -G \frac{M_T}{r^2} \overrightarrow{e_r}$
Energia potencial gravítica		$\dots Ep = -G \frac{Mm}{r}$
Lei de Coulomb		$\dots \vec{F}_e = k_0 \frac{Q q}{2} \vec{e}_r$
\vec{F}_e – força exercida entre carga elétrica pontual, q, e carga elétrica Q (criadora do campo) r – distância entre as duas cargas colocadas no vácuo k_0 – constante de Coulomb no vácuo		
Campo elétrico		$\vec{F} = \frac{\vec{F}e}{-}$
campo eletrico		L – q
Energia potencial elétrica		$. Ep = k \frac{Q q}{r}$
Potencial elétrico		$V = \frac{E_p}{q}$
Módulo do campo elétrico uniforme e	ntre dois pontos A e B à distância d	$\dots \mid \overrightarrow{E} \mid = \frac{ VA - VB }{d}$
Ação simultânea de campos elétricos	e magnéticos	$ \vec{F}_{em} = q\vec{E} + q\vec{v} \times \vec{B}$
$ec{F}_{em}$ - força eletromagnética que atua r	numa carga elétrica <i>q</i> que se desloca c	om velocidade $ec{v}$ num ponto onde
existe um campo elétrico \overrightarrow{E} e um camp	o magnético \overrightarrow{B}	
Energia elétrica armazenada num co	ndensador	$ E = \frac{1}{2} C U^2$
\mathcal{C} – capacidade do condensador U –		
Carga de um condensador num circuit	o RC	
Condensador a carregar		$Q(t) = C\varepsilon (1 - e^{-\frac{t}{RC}})$
Condensador a descarregar		$Q(t) = Q_0 e^{-\frac{t}{RC}}$
R – Resistência elétrica do circuito		
t – tempo	C – capacidade do condensador	

Prova 318 Página **5** de **6**

Relação entre massa e energia	$ \Delta E = \Delta m c^2$
Função que descreve um sinal harmónico ou sinusoidal	$y = A \sin(\omega t + \varphi_0)$
Comprimento de onda	$\lambda = \frac{v}{\epsilon}$
v – módulo da velocidade de propagação da onda	,
Lei de Wien	λ $_{ m m\acute{a}}$,
Efeito fotoelétrico	
$f-$ frequência da radiação incidente $h-$ cons $W-$ energia mínima para arrancar um eletrão do metal $E_{\rm c}-$ energia ciné	stante de Planck tica máxima do eletrão
Quantum de energia	E _o = h f
Lei do decaimento radioativo	
$N(t)$ – número de partículas no instante t ; N_0 – número de partículas λ – constante de decaimento	s no instante t_0
Tempo médio de vida	$\tau = \frac{1}{\lambda}$
Período de decaimento	$T_{1/2} = \frac{\ln 2}{2}$

Prova 318 Página **6** de **6**